ESTUDIO DE LA DIVERSIDAD GENÉTICA DE NUEVE ESPECIES DE Cattleya UTILIZANDO RAPD E ISTR

Luis Angulo-Graterol¹, Iris Pérez-Almeida², Gustavo Osorio², Catalina Ramis¹, Ángela Bedoya¹, Sandy Molina³ y Diógenes Infante³

RESUMEN

Se estudió la diversidad genética mediante el uso de marcadores RAPD e ISTR en nueve especies de Cattleya spp. colectadas en Venezuela. De los 49 iniciadores RAPD probados inicialmente, sólo 19 mostraron mayor resolución y número de fragmentos polimórficos discriminativos en geles de agarosa. Se generaron 255 fragmentos, de los cuales 158 fueron polimórficos. Para los ISTR utilizados, se logró información para cuatro de las cinco combinaciones empleadas en este estudio y se generaron 101 fragmentos, de los cuales 42 fueron polimórficos. Mediante el análisis de agrupamiento UPGMA distancia Jaccard de los RAPD se formaron cuatro grupos discriminantes, el primero constituido por C. lueddemanniana y C. lawrenceana; el segundo por C. percivaliana, el tercero por C. mendelii, C. violacea, C. trianae y C. mossiae; y el último por C. jenmanii y C. gaskelliana. Para los ISTR se formaron tres grupos, el primero constituido por C. mendelii, C. trianae y C. lawrenceana; el segundo por C. lueddemanniana, C. jenmanii y C. percivaliana y el último por C. mossiae, C. gaskelliana y C. violacea. El análisis molecular de las nueve especies de Cattleya reflejó una alta diversidad interespecífica basada en la presencia de patrones de fragmentos de ADN discriminativos obtenidos mediante ambos tipos de marcadores y produjo agrupamientos basados en la coloración de las flores y el hábitat de las plantas. Los patrones electroforéticos RAPD fueron más informativos al generar mayor número de bandas polimórficas que los basados en las combinaciones de ISTR.

Palabras clave adicionales: Orquídeas, marcadores moleculares, UPGMA

ABSTRACT

Evaluation of genetic diversity in nine species of Cattleya using RAPD and ISTR molecular markers

Genetic diversity of nine species of Cattleya spp. collected in Venezuela was studied using RAPD and ISTR molecular markers. Out of 49 RAPD primers initially used to identify polymorphic markers, only 19 showed higher resolution and number of discriminative polymorphic bands in agarose gels. Two-hundred fifty-five-bands were generated, from which 158 were polymorphic. For ISTR, information was obtained for four out of five combinations used in this study, thus generating 101 fragments, 42 of which were polymorphic. UPGMA cluster analysis of RAPD data using Jaccard distance found four discriminant groups, the first consisting of C. lueddemanniana and C. lawrenceana, the second by C. percivaliana, the third by C. mendelii, C. violacea, C. trianae and C. mossiae, and the last by C. jenmanii and C. gaskelliana. ISTR data analysis yielded three groups, the first consisting of C. mendelii, C. trianae and C. lawrenceana, the second by C. lueddemanniana, C. jenmanii and C. percivaliana, and the last by C. mossiae, C. gaskelliana and C. violacea. Molecular analysis of the nine species of Cattleya showed a high diversity among them based on the presence of different molecular banding patterns obtained using both marker types, and generated groups based on flower color and plant habitat. Given that RAPD patterns showed higher number of polymorphic bands, they were more informative than those based on ISTR combinations.

Additional key words: Orchids, molecular markers, UPGMA

INTRODUCCIÓN

Las orquídeas han alcanzado una diversidad que supera las 29.000 especies (Chase et al., 2003), por lo que han sido catalogadas como la

familia de Magnoliophyta más diversa y una de las más cosmopolitas en el mundo. En Venezuela, la familia está representada por unas 1.612 especies, la mayoría de ellas ubicadas en la Cordillera Andina y Guayana (Leopardi y

Recibido: Julio 19, 2012

Aceptado: Febrero 11, 2013 Centro de Investigaciones de Biotecnología Agrícola (CIBA), Facultad de Agronomía, Universidad Central de Venezuela. Maracay. Venezuela.

² Instituto Nacional de Investigaciones Agrícolas (INIA)-CENIAP. Apdo. 4653. Maracay. Venezuela

³ Centro Nacional de Biotecnología Agrícola, Fundación Instituto de Estudios Avanzados. Caracas. Venezuela. e-mail: iperez@inia.gob.ve; ibperez1@gmail.com

Cumana, 2009).

Del género *Cattleya* han sido colectadas en el país siete especies en forma silvestre: *C. gaskelliana*, *C. jenmanii*, *C. lawrenceana*, *C. lueddemanniana*, *C. mossiae*, *C. percivaliana* y *C. violacea*, entre las cuales el color más común es el morado (Aulissi y Foldast, 1989).

El alto nivel de especiación que presentan las orquídeas debido a su alta hibridización, trae como consecuencia una gran variabilidad genética en esta familia, por lo que es necesario el estudio genético de las poblaciones con la finalidad de conocer las relaciones y evolución entre especies para poder establecer futuros programas de conservación. Generalmente se han empleado descriptores morfológicos para la identificación y clasificación de las especies de *Cattleya* (Leopardi et al., 2009).

Existen varias técnicas que permiten realizar estudios evolutivos y de genética poblacional, identificación, mapeo y selección asistida por marcadores moleculares. Entre ellos se encuentran polimorfismos de ADN amplificados al azar o RAPD, los cuales amplifican aleatoriamente segmentos de ADN en una gran variedad de especies (Williams et al., 1990; Welsh y McClelland, 1990). Los RAPD son útiles en la elaboración de mapas genéticos, en el estudio de parentesco y en el análisis de la estructura poblacional, por lo que han sido utilizados en diversos estudios genéticos.

Otra técnica muy útil es la de los marcadores moleculares tipo repeticiones de secuencias etiquetadas inversas o ISTR (Rohde, 1996), las cuales son empleadas en estudios y detección de variabilidad genética entre individuos y las relaciones existentes entre ellos (Osorio et al., 2006).

El objetivo de este trabajo fue caracterizar molecularmente las siete especies silvestres de *Cattleya* ya mencionadas, así como dos especies de origen colombiano (*C. mendelii* y *C. trianae*), utilizando marcadores moleculares RAPD e ISTR.

MATERIALES Y MÉTODOS

Las nueve especies de *Cattleya* fueron colectadas en un vivero semicomercial de San Cristóbal, estado Táchira, y transportadas a bajas temperaturas hasta el laboratorio. Las características

de cada especie se presentan en el Cuadro 1.

La extracción del ADN genómico y el análisis molecular utilizando RAPD se realizaron en la Unidad de Biotecnología Agrícola (UBA) del Centro Nacional de Investigaciones Agropecuarias Instituto Nacional de Investigaciones Agrícolas (INIA-CENIAP) y en el Laboratorio de Genética Molecular (LGM) del Centro de Biotecnología Agrícola Investigaciones en (CIBA) de la Facultad de Agronomía de la Universidad Central de Venezuela (FAGRO-UCV) en Maracay. Los análisis moleculares empleando ISTR se ejecutaron en el Laboratorio de Biología Molecular, Centro Nacional de Biotecnología Agrícola, Fundación Instituto de Estudios Avanzados (IDEA), en Sartenejas, Caracas.

El aislamiento del ADN se realizó a partir de 0,5 g de los tejidos foliares colectados en plantas individuales representando cada genotipo, el cual fue macerado con nitrógeno líquido, siguiendo el método de extracción de Pérez-Almeida et al. (2011).

Técnica RAPD. La mezcla de la reacción en cadena de la polimerasa (PCR) consistió en tampón 1X, 2,5 mM MgCl₂, 0,17 mM por dNTP, 0,67 mg·mL⁻¹ BSA (suero de albúmina bovina), 1,33 uM del iniciador, 0,16 U·µL⁻¹ Taq polimerasa y 20 ng·µL⁻¹ de ADN, en un volumen final de 15 µL. La amplificación se realizó en un termociclador PTC 200 (Bio-Rad), en siguientes condiciones: desnaturalización inicial a 94 °C por 5 min, seguida por 45 ciclos de amplificación a 94 °C por 1 min, hibridación a 36 °C por 30 s y extensión 72 °C por 2 min, seguida por un ciclo final de extensión a 72 °C por 7 min. La separación de los productos de RAPD-PCR se realizó en geles de agarosa 2 %, corridos durante 2 h y media a 80 V y teñidos con bromuro de etidio 0,00002 %. Los geles fueron visualizados en el transiluminador UV y fotografiados con un analizador de imágenes Gel Doc (Bio-Rad).

Se utilizaron 49 iniciadores RAPD correspondientes a las series decaméricas OPA, OPC, OPB, OPF y OPM de OPERON Technologies, así como la serie UBC.

Técnica ISTR. Las amplificaciones con ISTR estuvieron constituidas por tampón 1X, 3 mM MgCl₂, 0,17 mM de cada dNTP, 0,33 uM iniciador ISTRF y 0,33 uM iniciador ISTRB, 1

U·μL⁻¹ *Taq* polimerasa y 20 ng·μL⁻¹ del ADN en un volumen final de 15 μL de reacción PCR. Se utilizaron cinco combinaciones de los iniciadores (F1-B8, F1-B10, F4-B6, F4-B10 y F9-B10) en un termociclador 2700 (Applied Biosystems). Las condiciones existentes para la amplificación fueron de desnaturalización inicial a 95 °C por 3

min, seguida de 40 ciclos de amplificación a 95 °C por 30 s, 45 °C por 1 min y 72 °C durante 2 min; ciclo final de extensión a 72 °C por 10 min. La separación de los productos amplificados ISTR-PCR se realizó en un gel de poliacrilamida al 6 % y se visualizó en un analizador de imágenes Typhoon 9410.

Cuadro 1. Algunas características de las especies de orquídeas utilizadas en el ensayo

Característica	Cattleya lawrenceana Reichembach	Cattleya lueddemanniana	<i>Cattelya</i> percivaliana O'Brien	Cattleya mendelii O'Brien	Cattleya violacea Rolfe	Cattleya trianae Linden & Reich	<i>Cattleya</i> <i>mossiae</i> Hook	<i>Cattleya</i> <i>jenmanii</i> Rolfe	<i>Cattleya</i> <i>gaskelliana</i> Reichembach
Nombre común	reichembach	Reichembach Flor de mayo, mayo o mayito, especiosa, la especiosa y especiosísima	Lirio morado, flor del libertador, flor de mayo		Superba de Orinoco		Flor de mayo, mayito, flor nacional de Venezuela		Flor de mayo, gloria de Caripe, la caripeña
Origen	Gran Sabana venezolana y frontera con Brasil y Guyana	Venezuela	Venezuela	Colombia	Venezuela, Guyana y Trinidad y Tobago		Venezuela	Gran Sabana, en el sureste de Venezuela	Colombia y Venezuela
Hábitat	Áreas boscosas y cercanías de ríos	Bosques semixerófitos a xerófitos, o bosques de tierra caliente húmedos y bosques de galería	Selva nublada constituida por bosques siempre verdes, bosque húmedo montano y premontano	cordillera andina	Selvas cerca de ríos, en ramas que extienden sobre el agua o en zonas irrigadas y condiciones tropicales	Bosques semidecíduos a perennes de montaña en las laderas de Los Andes	clima templados,	Bosques de clima cálido	Bosques montanos y bajo montanos siempre verdes
Zona geográfica	Sur de Bolivar y Amazonas, y selvas de la Gran Sabana. De 400 a 850 msnm, y de 15 a 26 °C	Desde el nivel del mar, colindante a la línea costera, hasta 900 msnm	De 1200 a 2000 msnm. Su área principalmente en el estado Trujillo	de Los Andes en Dptos. Boyacá, Santander y	800 a 1200 msnm en Brasil y países andinos. Venezuela, a < 600 msnm, en Bolívar, Amazonas, Apure, Guárico, y Delta Amacuro. De 15-29°C	600 a 1900 msnm en Dptos. Huila, Tolima y Cundinamarca, en Colombia	Vertientes de la cordillera de La Costa, 800 a 1500 msnm. También en Lara, Yaracuy, Cojedes y Los Andes	en la zona limítrofe entre	En Venezuela, límites entre Brasil y Guyana. 800-1500 msnm. Endémica en Anzoátegui, Monagas y Sucre
Color flor	Rosa o violeta pálido hasta blanco. Lóbulo del labio púrpura con una mancha marrón			Los sépalos y los pétalos son blancos, labios púrpuras con un centro amarillo	Púrpura a violeta intenso, a color suave	Desde blanco al lila pálido	Rosa lila suave a casi blanco. A veces rosa-lila encendido	Rosado-lila	Sépalos y pétalos púrpura- violeta, algunas veces con una media banda blanca
Hábito de crecimiento	Epífita	Casi siempre epífita	Generalmente epífita o litofíticas	Litofítica	Epífita	Epífita	Epífita	Epífita a veces litofítica	Epífita
Nº de hojas	Unifoliada	Unifoliada	Unifoliada	Unifoliada	Bifoliada	Unifoliada	Unifoliada	Unifoliada	Unifoliada
Tamaño	Pequeñas,		Pequeñas,	Grandes,	Medianas,	Grandes,	Grandes,	Pequeñas,	Grandes,
de la flor	10-12 cm de diámetro	Grandes	12-16 cm de diámetro	17,5-20 cm de diámetro	12 cm de diámetro	15-20 cm de diámetro	15-22 cm de diámetro	15 cm de diámetro	15-17 cm de diámetro
Nº de flores	Racimos de 3-8 flores	Racimos de 2-4 flores, a veces 5	2-6 flores medianas	3-4 flores	2-6 flores, raramente 8	3 flores, unas con 14 flores	2-7 flores	3- 7 flores	2 flores, aunque puede llegar a 5
Tipo de crecimiento	Simpodial	Simpodial	Simpodial	Simpodial	Simpodial	Simpodial	Simpodial	Simpodial	Simpodial
Bulbos	Pseudobulbos	Pseudobulbos	Pseudobulbos	Pseudobulbos	Pseudobulbos	Pseudobulbos	Pseudobulbos	Pseudobulbos	Pseudobulbos
Hojas	Dísticas, coriáceas. Hojas nuevas sin manchas	Algo más coriáceas que en el resto de las <i>Cattleyas</i>		Coriáceas. Hojas nuevas sin manchas	Coriáceas. Hojas nuevas sin manchas	Coriáceas Hojas nuevas sin manchas	Coriáceas. Hojas nuevas sin manchas	Coriáceas. Hojas nuevas sin manchas	Coriáceas. Hojas nuevas sin manchas
Época de floración	Entre febrero y abril	Septiembre a marzo, hasta 2- 3 veces al año	Agosto a octubre, y hasta diciembre		Noviembre a enero y julio a agosto	Octubre a diciembre	Marzo y mayo, o entre mayo y julio	Febrero a abril y agosto a noviembre	Marzo y octubre

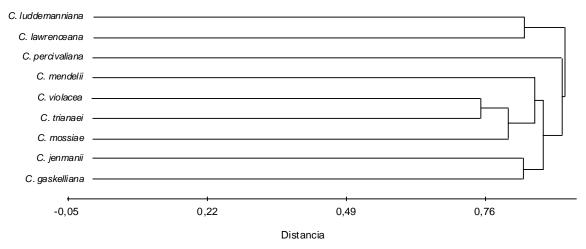
Análisis de resultados. Para la evaluación de las amplificaciones de ADN de cada uno de los materiales obtenidos en los geles de agarosa y el gel de poliacrilamida se generó una matriz de presencia y ausencia por cada banda detectada en los genotipos estudiados, para cada marcador RAPD e ISTR utilizado. La matriz obtenida con los marcadores polimórficos fue analizada con el programa estadístico InfoStat versión 1.1. Se realizó un análisis multivariado de conglomerados jerárquicos con la matriz y se generó un árbol de clasificación jerárquica ascendente, utilizando el análisis de agrupamiento UPGMA y la distancia de Jaccard. La matriz fue utilizada para el cálculo del índice de similaridad de Jaccard, determinar el porcentaje de polimorfismo y realizar el análisis de agrupamiento (dendrograma), a través del multivariado v del análisis método agrupamiento jerárquico usando el método de la distancia promedio no ponderada UPGMA.

RESULTADOS Y DISCUSIÓN

El análisis de los datos permitió encontrar que de los 49 iniciadores RAPD, sólo 19 presentaron polimorfismo (Cuadro 2). Con la información obtenida de los patrones de bandas en los geles se determinó el porcentaje de polimorfismo para cada marcador molecular. Se generó un total de 255 bandas, de las cuales 158 resultaron polimórficas, con un promedio de 13.42 bandas por iniciador. Benner et al. (1995) obtuvieron 135 bandas en total y el 35 % de los productos RAPD fueron polimórficos para ocho especies de Cattleya de Centro y Sur América utilizando diez cebadores RAPD. En el presente estudio el 61,96 % de las bandas fueron polimórficas para las 9 especies estudiadas. Estas diferencias pueden atribuirse al distinto número de cebadores empleados en ambas investigaciones.

Cuadro 2. Cebadores utilizados en este estudio con sus respectivas secuencias y el número de bandas polimórficas generadas

pormiorneas generadas						
Cebador	Secuencia (5'→3')	Total de bandas	Bandas polimórficas	Polimorfismo (%)		
OPA 02	TGCCGAGCTG	13	7	53,85		
OPA 03	AGTCAGCCAC	19	8	42,11		
OPA 04	AATCGGGCTG	19	13	68,42		
OPA 09	GGGTAACGCC	6	6	100,00		
OPA 13	CAGCACCCAC	18	6	33,33		
OPA 18	AGGTGACCGT	9	8	88,89		
OPA 19	CAAACGTCGG	12	8	66,67		
OPB 05	TGCGCCCTTC	14	9	64,29		
OPB 07	GGTGACGCAG	18	9	50,00		
OPC 05	GATGACCGCC	13	5	38,46		
OPC 07	GTCCCGACGA	16	10	62,50		
OPC 12	TGTCATCCCC	12	9	75,00		
OPC 14	TGCGTGCTTG	10	5	50,00		
OPC 20	ACTTCGCCAC	12	6	50,00		
OPF 03	CCTGATCACC	11	7	63,64		
OPF 04	GGTGATCAGG	17	15	88,24		
OPF 09	CCAAGCTTCC	7	4	57,14		
OPF 13	GGCTGCAGAA	14	12	85,71		
UBC 155	CTGGCGGCTG	15	11	73,33		
_	Total	255	158			


Es importante destacar que varios de los cebadores que presentaron polimorfismo fueron muy informativos, principalmente OPA 09, OPA 18, OPC 12, OPF 04, OPF 13 y UBC 155, dada su

capacidad de diferenciar entre las nueve especies de *Cattleya* ya que generaron 6, 8, 9, 15, 12 y 11 bandas polimórficas, respectivamente, y entre ellos se destacó el cebador OPA 09 con 100 % de

bandas polimórficas. El UBC 155 también fue reportado como un cebador polimórfico por De Campos (2004), quien señaló que de las 12 bandas observadas en el gel de agarosa, nueve mostraron diferencias entre las 11 variedades de orquídeas analizadas.

En el análisis UPGMA con distancia de Jaccard se encontró la formación de cuatro grupos discriminantes (Figura 1) y una correlación cofenética de 0,913 para este estudio interespecífico. El primer grupo estuvo constituido por *C. lueddemanniana* y *C. lawrenceana*, grupo de *Cattleya* que presenta flores de color rosa o violeta uniformes y desde blancas hasta lila muy oscuro;

el segundo por *C. percivaliana*, una orquídea venezolana de flores de color único característico en el género, cuyo hábitat comprende alturas entre 1200 y 2000 msnm; el tercero por *C. mendelii*, *C. violacea*, *C. trianae* y *C. mossiae*, con flores tamaños medianos a grandes y cuyos hábitats comprenden de 700 a 1500 msnm; dos de las especies de este grupo son de origen colombiano. El último grupo está constituido por *C. jenmanii*, y *C. gaskelliana*, cuyas zonas geográficas son limítrofes con Brasil y Guyana. Los coeficientes de similitud de los grupos fueron 0,89; 0,98; 0,86 y 0,89, respectivamente, para cada una de las cuatro agrupaciones.

Figura 1. Dendrograma obtenido del análisis de agrupamiento UPGMA y distancia genética Jaccard para nueve especies de *Cattleya* utilizando los 19 cebadores RAPD señalados en el Cuadro 2

En este estudio de variabilidad interespecífica las especies fueron agrupadas por el espectro de los colores producidos por sus flores y hojas, y en otros casos por su distribución y variaciones entre los distintos hábitats naturales crecimiento. En el caso particular C. percivaliana, planta de origen venezolano, de flores de color característico y hábitat de bosques húmedos premontano y montano, se ubicó sola en el segundo grupo en el análisis de agrupamiento. Así mismo, las dos especies colombianas (C. mendelii y C. trianae) se concentraron en el tercer grupo, posiblemente por presentar sépalos y pétalos blancos con labios de lila a púrpura, y por su ubicación geográfica.

Estos resultados comprueban la efectividad y utilidad de los marcadores RAPD en estudios de diversidad genética para evaluar la variabilidad interespecífica del género *Cattleya*, considerando un ejemplar para cada una de las especies utilizadas. Al emplear dos o más ejemplares por especie y realizar un estudio intraespecífico es posible que las relaciones genéticas detectadas no sean muy diferentes, de acuerdo con los resultados de Do Rego et al. (2009), quienes estudiaron la variabilidad intraespecífica de *Cattleya violacea* en regiones de la Amazonia y detectaron diez grupos diferentes, cada grupo conformado por variedades relacionadas también con los sitios de colecta y colores producidos por sus flores.

Por otra parte, Benner et al. (1995) trabajaron en la detección de polimorfismos de ADN en el género *Cattleya* mediante RAPD, y reportaron como resultado un alto nivel de variabilidad molecular. Concluyeron que la metodología de los RAPD les reveló niveles significativos de ADN

polimórfico inter e intraespecífico del género Cattleva.

Lim et al. (1999), utilizando marcadores moleculares RAPD, demostraron la baja similitud genética entre algunas especies del género *Vanda* (Orchidaceae) y lograron separar en géneros diferentes a las plantas con hojas planas u hojas cilíndricas. En función de sus resultados los autores recomendaron la utilización del RAPD como una herramienta para clasificar especies de la familia Orchidaceae.

La metodología de los marcadores ISTR permitió observar diferencias entre las nueve especies evaluadas en este estudio por los patrones de bandas generados. Cuatro de las cinco combinaciones de los iniciadores ISTR fueron polimórficas (Cuadro 3). La combinación F9-B10,

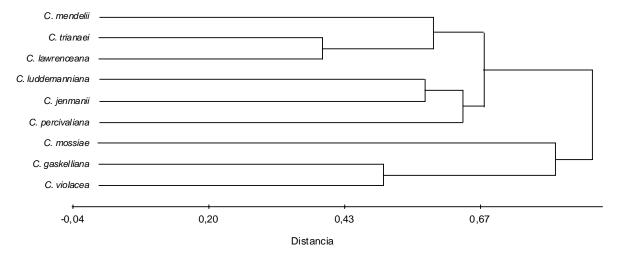
no mostró mayor información polimórfica ni diferencias entre las especies. Las combinaciones de iniciadores generaron 101 bandas en total, 42 de éstas fueron polimórficas, para un promedio de 25,25 bandas por combinación ISTR y 41,58 % de productos polimórficos. La mejor combinación fue F4-B10 que presentó 47,37 % de información polimórfica.

Los resultados sugieren la existencia de variabilidad genética entre las especies de *Cattleya* dados los patrones generados para las combinaciones de los ISTR, lo cual resalta su utilidad para este estudio. Estas evidencias comprueban su efectividad en estudios de diversidad, como ha sido reportado en clones de *Agave cocui* y *A. tequilana* (Osorio et al., 2006; Torres-Morán et al., 2005).

Cuadro 3. Secuencia de las combinaciones de los iniciadores ISTR, número y porcentaje de bandas polimórficas generadas

Iniciador ISTR	Secuencia	Total de bandas	Bandas polimórficas	Polimorfismo (%)
F1-B8	5'-GGACTCCACCAAGAATACC-3' 5'-ATACCTTTCAGGGGGATG-3'	13	6	46,15
F1-B10	5'-GGACTCCACCAAGAATACC-3' 5'-ACTGACCCTTTTGAAGAC-3'	40	15	37,50
F4-B6	5'-TCCTACCACACCGTATGAG-3' 5'-GGTTCCACTTGGTCCTTAG-3'	29	12	41,38
F4-B10	5'-TCCTACCACACCGTATGAG-3' 5'-ACTGACCCTTTTGAAGAC-3'	19	9	47,37
	Total	101	42	

En el análisis de agrupamiento se observaron tres grupos y una correlación cofenética de 0,882 en el dendrograma obtenido (Figura 2). Las especies quedaron agrupadas por número y color de las flores y por sus zonas geográficas; el primer grupo estuvo conformado por C. mendelii, C. trianae y C. lawrenceana, especies que presentan un número de flores en racimos comúnmente de tres flores; el segundo por C. lueddemanniana, C. jenmanii y C. percivaliana, grupo de orquídeas de flores rosado-lila, y el último por C. mossiae, C. gaskelliana y C. violacea, flores de color lila suave al púrpura y violeta intenso, y de zonas geográficas de 800 a 1200 msnm. Los coeficientes de similaridad fueron 0,49; 0,61 y 0,65, para cada agrupación, respectivamente (Figura 2).


Al emplear un mayor número de cebadores

RAPD que de combinaciones ISTR se logró obtener un número superior de patrones electroforéticos de información polimórfica para RAPD, al compararse con las combinaciones ISTR (61,96 y 41,58 %, respectivamente). Las combinaciones ISTR detectaron diversidad genética en las nueve especies de Cattleya, pero cebadores RAPD presentaron información discriminativa entre las especies y lograron separar a la especie C. percivaliana de las otras, posiblemente por poseer un hábitat con altitud superior a 1200 msnm en los estados andinos, principalmente en el estado Trujillo.

El dendrograma obtenido para los RAPD indicó la presencia de cuatro grupos genéticos, mientras que el de ISTR sólo tres grupos; la coincidencia entre ambos análisis de agrupamiento

se observó para las especies según su zona geográfica de origen y coloración de las flores desde blanco al lila pálido; por ejemplo, en ambos dendrogramas las especies *C. mendelii* y *C. trianae*, de origen colombiano se ubicaron en un mismo grupo. También hubo coincidencia entre los dendrogramas en la agrupación de las especies

por el hábitat entre *C. mossiae* y *C. violacea*, posiblemente por ser especies principalmente de Venezuela, ubicadas en zonas geográficas superiores a 800 msnm y de clima húmedo; mientras que para las otras cinco especies, no hubo coincidencia entre los grupos generados para las dos técnicas moleculares.

Figura 2. Dendrograma obtenido del análisis de agrupamiento UPGMA, distancia genética Jaccard, para nueve especies de *Cattleya* con cuatro combinaciones (F1-B8, F1-B10, F4-B6 y F4-B10) de marcadores ISTR.

CONCLUSIONES

La aplicabilidad de marcadores moleculares del tipo RAPD e ISTR representa una herramienta confiable en la determinación de la diversidad genética para el género Cattleya y el estudio de las relaciones existentes entre sus especies para la coloración de los sépalos y pétalos, así como a su ubicación geográfica y hábitat de crecimiento. Los patrones RAPD fueron más informativos para la caracterización molecular de especies dentro del género al producir mayor número de bandas polimórficas basados que los combinaciones de ISTR. En la agrupación de las especies de origen colombiano ambos marcadores permitieron moleculares diferenciarlas respecto a las de origen venezolano.

Estos estudios pueden servir de base para el futuro establecimiento de estrategias eficientes para la caracterización de las especies del género *Cattleya* y el desarrollo de un sistema de marcadores para analizar su estructura y diversidad genética.

LITERATURA CITADA

- 1. Aulissi, C. y E. Foldast. 1989. Monografia de las *Cattleyas* de Venezuela y sus variedades. Ed. Torino. Caracas. 330 p.
- 2. Benner, M., M. Braunstein y M. Weisberg. 1995. Detection of DNA polymorphism within the genus *Cattleya* (Orchidaceae). Plant Molecular Biology Rep. 13: 147-155.
- 3. Chase, M., J. Freudenstein, K. Cameron y R. Barrett. 2003. DNA data and Orchidaceae systematics: a new phylogenetic classification. *In*: K. Dixon, S. Kell, R. Barrett y P. Cribb (eds.). Orchid Conservation. Natural History Publications. Kota Kinabalu, Malasia. pp. 69-89
- De Campos, B. 2004. Estudo da variabilidade genética em *Cattleya violacea* (H.B.K.) Rolfe (Orchidaceae) por meio de marcadores moleculares RAPD no estado de Roraima, Brasil. Monografía Universidad Federal de Roraima (UFRR). 41 p.

- 5. Do Rego, E., M. Do Rego y B. De Campos. 2009. Genetic variability in *Cattleya violacea* (Orchidaceae) in the Amazonian region. Acta Horticulturae 813: 413-420.
- Leopardi, C. y L. Cumana. 2009. Nuevos reportes de la familia Orchidaceae para la región nororiental de Venezuela, con énfasis en el estado Sucre. Ernstia 19: 81-95.
- 7. Leopardi, C., J. Véliz y L. Cumana. 2009. Orquideoflórula preliminar de la Península de Araya y áreas adyacentes, Estado Sucre, Venezuela. Acta Bot. Venez. 32: 159-177.
- 8. Lim, S., P. Peng, L. Hwa y C. Jin. 1999. RAPD analysis of some species in the genus *Vanda* (Orchidaceae). Annals of Botany. 83: 193-196.
- 9. Osorio, M., D. Infante y S. Molina. 2006. Estudio de la variabilidad genética asexual en *Agave cocui* Trelease mediante el uso de marcadores moleculares. Bol. Nakari. 17: 1-7.
- Pérez-Almeida, I., L. Angulo-Graterol, G. Osorio, C. Ramis, A. Bedoya, R. Figueroa-Ruiz, S. Molina y D. Infante. 2011. Método

- modificado de obtención de ADN genómico en orquídeas (*Cattleya* spp.) para amplificación con marcadores moleculares. Bioagro 23: 27-34
- 11.Rohde, W. 1996. Inverse sequence-tagged repeat (ISTR) analysis, a novel and universal PCR-based technique for genome analysis in the plant and animal kingdom. J. Genet. Breed. 50: 249-261.
- 12. Torres-Morán, M., D. Infante, J. Sánchez-González, A. Morales-Rivera y A. Santerre. 2005. Diversidad genética en *Agave tequilana* Weber variedad Azul, proveniente de micropropagación. Bol. Nakari 16: 3-7.
- 13. Welsh, J. y M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18: 7213-7218.
- 14. Williams, J., A. Kubelik, K. Livak, J. Rafalski y S. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535.